慈濟大學 9 8 學年度 研究所碩士班招生考試命題紙

科目:分子生物學

共2頁

- 1. Please describe steps how pol II initiation complex is formed. (5%)
- 2. Please describe steps for the formation of spliosome in the splicing of pre mRNA. (5%)
- 3. What are the 3 major functions of CTD (C-terminal domain) of pol II polymerase? (3%)
- 4. Please give an example to describe function of an oncogene in normal cells and how it was turned oncogenic in tumorigenesis. (6%)
- 5. Please give 2 examples how tumor suppressor regulates cell functions to prevent tumor formation. (6%)
- 6. Signal transduction is important in various aspects of biomedical research. Use one application to illustrate its importance. (10%)
- 7. Explain a). tandemly repetitive sequences and b). intersperse repetitive sequences in human genome. (15%)
- 8. On basis of the following DNA sequence,

Promoter ----- \rightarrow •

TATA Box

↓ start site of transcription

stop site of transcription \

- 5` -- TATATTCTCGAATAGGTCCACGATGGAAGACTTAAGCTAAGCCGCCAGAAC—3'
- a) please write down DNA sequence after replication and mRNA sequence after transcription, don't forget to label the 5' and 3' at ends of your sequence. (5%)
- b) please write down amino acid sequence after translation, don't forget to label the N and C terminal at ends of your amino acid sequence. (5%)

慈濟大學 9 8 學年度 研究所碩士班招生考試命題紙

科目:分子生物學

共2頁

			Se	cond	position			
	U		Ć		Α	G		
U		Phe	ncc	Ser	UAU Tyr	ugu	Cys	U
	UUA	Leu	UCA UCG		UAA STOP	UGA S	STOP Trp	A G
C	CUU CUC CUA CUG	\ Leu	CCU CCC CCA CCG	Pro	CAU His CAC GIn CAG	CGU CGC CGA CGG	Arg	UCAG
A	AUU AUC AUA AUG	lle Met	ACU ACC ACA ACG	Thr	AAU Asn AAC Lys AAG	AGU AGC AGA AGG	Ser	UCAG
G	GUU GUC GUA GUG	} Val	GCU GCC GCA GCG	Ala	GAU Asp GAA Glu	GGU GGC GGA GGG	} Gly	UCAG

Figure 18.6 The genetic code. All 64 codons are listed, along with the amino acid for which each codes. To find a given codon—ACU, for example—we start with the wide horizontal row labeled with the name of the first base of the codon (A) on the left horder. Then we make

- 9. Please use a diagram to explain the reason why DNA replication must obey the rule 5' to 3' direction. (8%)
- 10. Please explain IRES (Internal ribosome entry site) and describe its role in research. (7%)
- 11. Please describe the post-modifications of histones. (10%)
- 12. What are "Euchromatin" and "heterochromatin"? (10%)
- 13. What is "Kozak consensus sequence"? (5%)